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Abstract. In terms of the refractive index tensorsN , the operator solving a problem of reflection
and refraction of electromagnetic waves on plane boundary between isotropic dielectrics is given.
Separately, the behaviour of Beltrami fields on the boundary is considered. They are described
by infinite sets of branches of the traceless indefinite tensorsN which are generators of involutive
Maxwell groups for photon–antiphoton meeting pairs. The connections of the traceless tensors
N with Fresnel reflection and transmission coefficients, Stokes relations, Beltrami fields and
reflectional Coxeter’s groups are established.

1. Introduction

A refractive indexN is one of the oldest concepts. Its meaning has repeatedly become more
precise and gained new content. IndexN originally appeared as a scalar coefficient in the
formulation of the kinematical reflection law and variational principles. It was ascertained
thatN depends on frequency in dispersive media and characterizes velocities of harmonic
waves. The effect of birefringence is described by two refractive indices. Practical use
of complex-valued functions also predetermined complexification ofN for the description
of optical dichroism. The discovery of the transversality of light waves pointed to their
vector nature and led to further steps to make the meaning ofN more precise. As a basic
tool in geometrical optics Hamilton used scalar refractive indices and introduced analogous
functions in mechanics. In modern mechanics operator equations, quaternions, Hamilton
operators are used. But for a long time in opticsN was treated as a scalar although Maxwell’s
equations themselves pointed to the possibility of operator generalization. IndexN gained
new significance in the works of Lorentz, who checked Fresnel formulae from the viewpoint
of electromagnetic theory. This important problem was investigated by him in his doctoral
thesis (1875) [1]. The ‘microscopic point of view’ of the mechanism of light refraction
substantiated by Lorentz furthered the understanding of molecular optics [2]. A wave which
has reached a medium causes oscillations of the dipole moments of each atom (or molecule).
These dipole oscillations cause a secondary radiation. This radiation is considered to be the
result of the incident wave scattering. Specific features of such coherent scattering have been
investigated in many works [2]. The way in which the possibility of introducing refractive
indexN appears to be the result of forward wave scattering is explained by optical theory [3].
The angular distribution of the scattered unpolarized radiation at low frequencies is described
by the Thomson formula. Radiation intensities forward and backwards are equal [4]. This
equality is violated for high-energy photons (Klein–Nishina formula [4]).

0305-4470/99/112061+14$19.50 © 1999 IOP Publishing Ltd 2061



2062 L M Barkovsky and A N Furs

The refractive indexN of a medium is determined by the formulaNab = 1+2πk−2fab(0),
a, b = 1, 2 wheren is total of particles per unit volume,k is a wavenumber of the incident
wave,fab(0) is a 2× 2 matrix amplitude of forward scattering for each separate atom. The
complex matrixNab describes the effects of birefringence and dichroism including those caused
by external actions. Faraday, Kerr, Pockels and Cotton–Mouton effects, which allow us to
use the refractive index in approximation of the given field, are among such effects. The
effect of self-focusing is among them also. In [5], for media with dispersion and nonlinearity
without time-lag, the analysis of soliton solutions of the nonlinear wave equation is carried
out by the new inverse transform method. Inverse problems of optics of complex media
(bianisotropic, moving, dispersive) have become highly relevant recently [6–8]. Solving such
problems (non-scalar in consideration of photon spin) for linear media leads to the almost
unexplored field of exact solutions of nonlinear tensor wave equations by the inverse transform
method. The existence of polarized one-directed solitary waves is one of the typical features
of such solutions. In covariant crystal optics all the tensors are treated as operators of the
three-dimensional space [9]. Refractive indicesN are also the second-rank tensors of the
three-dimensional space and play a substantial role in inverse problems of optics [6–9]. They
generate global transfer operators (evolution Cauchy operators) and can be found by solving
the tensor dispersion equations [10]. From similar equations the impedance operators0 and
frequency operators� can be found which describe the field evolution in the presence of
inhomogeneities. In the works cited above and in a number of other works we widely used a
spectral method of representation of the evolution solutions with the help of projective operators
(polarization projectors). For these operators general covariant expressions were derived in
which a wave normal and material tensors are involved. The internal unity of the spectral
approach guarantees that the quantity of the tensor nonlinear wave equations integrated by the
spectral transform method [11] will increase. In the case of isotropic media with dielectric
permittivity ε and magnetic permeabilityµ, the operatorsN are found by extracting the square
rootN = (εµI)1/2 whereI 2 = I is a transverse projective operator. An infinite set of branches
ofN corresponds to even and odd states of the photon pairs (homogeneous and evanescent, co-
directed and oppositely directed, having the same velocities [9,10]). Branches ofN generate
continuous Maxwell groups and semi-groups of operators which describe a motion of vectors
of the electromagnetic field along the generalized helices (boson strings [12,13], Lakshmanan
1979, Reiter 1980, Greenet al 1987) with leadλ0/(εµ)

1/2. These helices wind around the
elliptical cylinders inserted in each other. The traceless branches ofN are associated with the
rotation and reflection isometries which characterize metric properties of wave surfaces. In
the case of the tensor�, elements of the cylinders are parallel to the time axis. The cylinders
themselves are portions of two-dimensional toroids. Symmetries of the tensorsN , � and0
require that the helices (right-handed and left-handed) form a set of closed lines being geodesic
on the toroids for circular polarizations. These non-plane lines in the three-dimensional space
have non-zero curvatures and torsions. In [10] (Barkovsky and Furs 1997) the dependence
of curvatures, torsions and Darboux methods on initial conditions and distance was found by
the method of mobile Frenet trihedral. There the question was one of the so-called wave-
guided solutions [14] described by the operatorsN . By replacing the spatial coordinate with
time all the conclusions of [10] can be applied also to oscillator solutions [14] described by
the frequency tensors�. For even states the traces of the tensorsN turn out to be equal to
±2(εµ)1/2 and for odd states to be equal to zero. This indicates the existence of photon–
antiphoton, or in other words soliton–antisoliton, pairs. For a number of known nonlinear
wave equations such symmetries of their soliton solutions are directly connected with the
geometry of Riemann spaces of constant curvature [11, 12]. In the case under consideration
the two-dimensional surfaces of wavefronts and mirrors are immersed in the three-dimensional
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space and are characterized by their own metric tensors and isometries connected with phase
normalsn and vectorsS,C. These vectors are involved inN ,� and0. It is thus necessary to
consider manifolds with indefinite metrics [11,13,15,16]. Traceless branches of the operators
N , � and0 are indefinite. As is shown in [10], they describe superpositions of elliptically
polarized meeting waves in an isotropic medium, i.e. manifolds of standing elliptical helices
closed on themselves. At the internal description of fields in the wavefront subspaces, three
similar indefinite 2× 2 matrices (Pauli matrices) appear in the representation ofN , � and
0. The appropriate fronts are associated with Möbius (one-sided) surfaces unoriented in the
three-dimensional space. For quantization of an electromagnetic field one has resort to the
use of indefinite metrics. In [17], Heitler used involutive indefinite metric operators for this
purpose (see also [18]).

IndefiniteN , � and0 describe colliding optical solitons being elliptically polarized
meeting photon–antiphoton pairs. It is known that dispersion and nonlinearity are not always
necessary for wave equations to have soliton solutions [19]. It is essential that in a number
of cases a possibility remains to apply to nonlinear media the concept of refractive index
depending one way or another on intensity of light waves. Nonlinear refractive indices are
responsible for self-trapping phenomena, for giving rise to induced waveguides (light-induced
lensing). In recent years the family of spatial and temporal optical solitons was extended. Side
by side with(1 + 1)D solitons stable(2 + 1)D rays were experimentally observed [20]. The
latter are not localized in the same plane and have spiral form [20] in space. Rays (beams) are
combined from angular spectra of plane waves. It is undoubted that in this combining, angular
momentum plays an important role [21, 22]. The problem of its conservation for families of
the soliton interactions in three dimensions was specially discussed in recent papers [20]. It is
not excluded that the spatial oscillations of Darboux vectors discovered in [10] for elliptically
polarized photons could be used in explanation of(2 + 1)D-ray spatial configurations.

In modern theory of optical waveguides the Fresnel formulae are widely used and
inhomogeneous media with various profiles of the scalar refractive index are considered [23].
Recently, in a series of works [24], the existence of plane electromagnetic waves with parallel
electricE and magneticH vectors in free space was discussed. These works highlighted the
general absence of information about such fields (of the Beltrami type) in classic monographs
on electrodynamics. As an example, the book [4] of Jackson was pointed out. Here we
show how the derivation of Fresnel formulae given in that book for interfaces between non-
conductive isotropic electromagnetics can be extended to include fields withE ‖H and how
this derivation can be stated completely in terms of the tensorsN , taking into account their even
and odd branches. The problem of Beltrami fields on the interfaces of dielectrics was earlier
considered in [9] (Barkovskyet al 1996) but without using the tensor indicesN . In the main
part of this paper, with the use of the evolution solutions we analyse the problem of reflection
and refraction of electromagnetic waves at oblique incidence to find Fresnel reflection and
transmission operatorsR andT (section 2). Two cases are considered: when the trace of
the refractive index tensorN is not equal to zero (running waves) and whenN is traceless
(fields of the Beltrami type). In section 3 only normal incidence of waves is considered in
supposition that in both half-spaces the solutions are described by tracelessN . For this case
it is established that the refractive index tensorsN have special ‘triangular’ form and can be
expressed in terms of Fresnel coefficientsr, r ′, t , t ′. Also, we discuss the problem of the light
reversibility and connections of the operator solutions with Coxeter groups.



2064 L M Barkovsky and A N Furs

Figure 1. Disposition of wave normals and polarization vectors for incident, reflected and refracted
waves.

2. TensorN in the problem of coherent scattering on the plane boundary of
electromagnetics and Beltrami fields

Let a plane electromagnetic wave with angular frequencyω and phase normaln be obliquely
incident on the boundary between two semiinfinite homogeneous linear isotropic media from
the direction of the lower medium having dielectric permittivityε and magnetic permeability
µ (figure 1). Accordingly, the upper medium has permittivityε′ and permeabilityµ′. The
electromagnetic field of the wave is described by four vectorsE, D, B, H and its spatial
variation is described by the scalarζ = n · r wherer is the position vector of the observation
point. For each valueζ there corresponds some fixed position of the wavefront which is
perpendicular ton. Supposing that the magnetic field intensity atζ = 0 is given, we can
represent its value at another point by using the evolution formula

H(ζ ) = eik0NζH(0) (1)

wherek0 = ω/c isvacuowavenumber andN is the second-rank tensor of refractive indices for
the fieldH. A covariant vector solution of the boundary problem as given by Fedorov (see, for
example, [9] (Barkovsky and Borzdov 1997)). He used partial waves (partial solutions of the
wave equation) which turn out to be effectively described by refraction vectorsm = nn. Inm
a scalarn is the refractive index of the isotropic medium at frequencyω. The spatial part of the
phase of such waves is expressed asϕ(ζ ) = ωm · r/c = k0nn · r = kn · r = k · r = ωζ/v.
Herev = c/n is the phase velocity,k is the wavevector. Expression (1) is a generalization of
partial solutions with scalar exponential factors. Now the argument of the exponential function
in (1) contains not vectorm but the third-rank tensor ik0N⊗nmultiplied from the right by the
position vector (or convoluted withr in the latter index:(ik0N⊗n)r = ik0Nζ = (ik0Nijnkrk),
i, j, k = 1, 2, 3). As a result its rank decreases to two. The exponential operator in (1) acts
on the vectorH(0) and characterizes the variation ofH at passage from the pointζ = 0 to
another point,ζ 6= 0. In crystal optics there are four refractive index tensorsN(e),N(d),N(h),
N(b) describing spatial evolution of the field vectorsE,D,B,H respectively. In anisotropic
media they differ from each other but in isotropic media they simply coincide.

The dispersion equation for findingN in an isotropic medium is

N2 = −m×2 =m2 −m⊗m = εµn×2 (2)
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wherem×il = eiklmk, eikl is the Levi-Civita pseudotensor,i, j, k = 1, 2, 3. Summation is
meant by repeated indices. The antisymmetric pseudotensor of the second rankm× is dual
to the vectorm. In a Cartesian basis this tensor can be considered as a ‘matrix vector’:
m× = nn× = m1L1 +m2L2 +m3L3. Heremi are usual Cartesian components of the vector
m, and antisymmetric ‘3× 3 vectors’Li of the matrix basis determine rotations with unit
angular velocity about the coordinate axes. They are under the following commutation rules
[L1, L2] = L3, [L2, L3] = L1, [L3, L1] = L2. Basis spin matricesLi (for spin 1) determine
infinitesimal rotations of the spaceE3. Operators of the typeLi were used by Helmholtz in his
vortex theory. Appearance of the operatorn× in optics is simply a consequence of Maxwell’s
equations containing thecurl operator. Any tensor function ofn× contains only summands
with the tensorsn× andn×2. The electromagnetic field of any wave is locally plane since
its wavefront in a small neighbourhood may be replaced by the tangent plane with normaln
which is immersed in the three-dimensional space.

We have already noted that there is an infinite set of solutions of (2). They are divided
into two types: symmetric with non-zero trace and traceless (trN = 0). In the first caseN
are associated with co-directed waves and in the second with meeting waves. At first let us
consider the symmetric branch

N = (εµ)1/2(−n×2
) = (εµ)1/2I trN = 2(εµ)1/2. (3)

OperatorI (I 2 = I ) and diadn ⊗ n ((n ⊗ n)2 = n ⊗ n) are projective operators. The
first relation in (3) is in essence the spectral expansion of the unit operator 1= n⊗ n + I of
the three-dimensional space into the one-dimensional subspace alongn and two-dimensional
subspace being a plane orthogonal ton. Acting on any vectora the operatorI projects it
to this plane:Ia = −n×2

a = −[n[na]] = a − (n · a)n, and diadn ⊗ n projectsa in
then-direction (square brackets denote a vector product of two vectors). Now we choose on
the wave surface of the incident wave (see figure 1) a pair of the unit mutually perpendicular
vectorss andp which form withn the right-handed triad, the vectors being perpendicular
(s · n = s · q = 0) to the incidence plane (the plane of figure 1). Then we can expandI

I = s⊗ s + p⊗ p [sp] = n (4)

into one-dimensional subspaces characterized by the symmetric projective diadss ⊗ s and
p⊗ p under conditionss2 = p2 = 1, s · p = s · n = s · q = 0. It is clear that relation (4) is
only one of the spectral expansions ofI .

The phase normalsn′ andn′′ of the refracted and reflected waves are in the incidence plane
whose orientation is given by vectors. Therefore diads ⊗ s is also involved in expressions
for the transverse projectors of the refracted and reflected waves (see figure 1)

I ′ = −(n′×)2 = 1− n′ ⊗ n′ = s⊗ s + p′ ⊗ p′ [sp′] = n′ (5)

I ′′ = −(n′′×)2 = 1− n′′ ⊗ n′′ = s⊗ s + p′′ ⊗ p′′ [sp′′] = n′′. (6)

Since these waves run away from the boundary then triadss, p′,n′ ands, p′′,n′′ together with
s, p, nmust be right-handed. In so doing, vectorsp′ andp′′ form angles ofi ′ − i andπ − 2i,
respectively, with vectorp. The same thing is valid for vectorsn′, n′′ andn. We have

n′ = es
×(i ′−i)n = [sn] sin(i ′ − i) +n cos(i ′ − i)

n′′ = es
×(π−2i)n = [sn] sin 2i − n cos 2i

where known representation of the rotation operator (versor) about the unit vectors through
an angleϕ is used

exp(s×ϕ) = s⊗ s + s× sinϕ − s×2 cosϕ.
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Unit vectorsq, n, n′, n′′, s, p, s′, p′, s′′, p′′ specify orientations of ten two-sided (non-
Möbius) planes in the three-dimensional space. Taking into consideration equations (3)–(6)
we can write the refractive index tensors of the refracted and reflected waves as

N ′ = (ε′µ′)1/2I ′ N ′′ = (εµ)1/2I ′′ I ′2 = I ′ I ′′2 = I ′′. (7)

The difference ofN ′′ from N is only in the propagation direction of the wave in the same
medium. In contrast to material constantsε, µ, n2 = εµ the tensorN (andN ′, N ′′) is not
tensor of material constants. The projection character ofI , I ′, I ′′ (3), (7) enables us to clear
tensors in exponents

H(ζ ) = IH(0)eikζ H ′(ζ ′) = I ′H ′(0)eik′ζ ′ H ′′(ζ ′′) = I ′′H ′′(0)eikζ ′′

k = k0(εµ)
1/2 k′ = k0(ε

′µ′)1/2. (8)

Unit operators which are the first terms of expansions into a series of the tensor exponentials
contain along withI , I ′, I ′′ the diadsn⊗ n, n′ ⊗ n′, n′′ ⊗ n′′. These diads vanish in (8) in
view of the field transversality. Acting onH(0),H ′(0),H ′′(0) projectorsI , I ′, I ′′ split them
in the pointζ = ζ ′ = ζ ′′ = n · r = n′ · r = n′′ · r = 0 into partial waves which propagate
with equal velocities, for example,(εµ)−1/2NH(0) = IH(0) = (s ⊗ s + p ⊗ p)H(0) =
s(s ·H(0)) + p(p ·H(0)) = Hs(0) +Hp(0). At steady state the phases of all the fields on
the boundary must be equal. In the Cartesian coordinate system with origin on the boundary
and withz-axis parallel toq we have

k · r|ζ=0 = k′ · r|ζ=0 = k′′ · r|ζ=0 k′ = k′n′, k′′ = k′n′′
whence equalities

(εµ)1/2 sini = (ε′µ′)1/2 sini ′ = (εµ)1/2 sini ′′

follow. They express kinematical reflection and refraction laws.
Dynamical reflection and refraction laws are described by Fresnel reflection and

transmission operatorsR andT . For an arbitrary fieldH of the incident wave on the boundary
we have by definition

H ′ = TH H ′′ = RH (9)

whereR andT characterize the fields of the reflected and transmitted waves on the boundary,
respectively. For findingR andT in [25] a surface impedance tensor were used. Therefore in
the formulae forR andT given in [25] the same for all waves tangential componentb of the
refraction vector and the normal vectorq to the boundary are involved. We have

H ′s = (s⊗ s)H ′ = tsHs = ts(s⊗ s)H
H ′′s = (s⊗ s)H ′′ = rsHs = rs(s⊗ s)H
H ′p′ = (p′ ⊗ p′)H ′ = tpHp′ = tp(p′ ⊗ p)H
H ′′p′′ = (p′′ ⊗ p′′)H ′′ = rpHp′′ = rp(p′′ ⊗ p)H

where

ts = 2

1 + (ε tani/ε′ tani ′)
rs = 1− (ε tani/ε′ tani ′)

1 + (ε tani/ε′ tani ′)

tp = 2
√
εµ

ε′µ′
sin 2i

(ε/ε′) sin 2i + sin 2i ′
rp = (ε/ε′) sin 2i − sin 2i ′

(ε/ε′) sin 2i + sin 2i ′
.

(10)

In the same parametrization which have been used for representation ofN nowR andT take
the form

R = rss⊗ s + rp(n⊗ p sin 2i − p⊗ p cos 2i)

T = tss⊗ s + tp(n⊗ p sin(i ′ − i) + p⊗ p cos(i ′ − i)).
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Coefficientsrs, rp, ts, tp characterize transverse anisotropy of reflection and transmission of a
boundary of isotropic media which is the result of the oblique wave incidence. It is evident that
replacementsT → T +A⊗n,R→ R+B⊗nwhereA andB are arbitrary constant vectors
do not change (9). This possibility follows from the gauge invariance of the electromagnetic
field. At normal incidence we have

R = rI T = tI
I = 1− n⊗ n = 1− q ⊗ q = 1− n′ ⊗ n′ = 1− n′′ ⊗ n′′

where

t = ts = tp = 2

1 +
√
εµ′/ε′µ

r = rs = −rp = 1−√εµ′/ε′µ
1 +
√
εµ′/ε′µ

t − r = 1. (11)

Now we turn to other traceless (antisymmetric) solutions of the dispersion equation (2)

N± = ±im× = ±m · σ = ±(εµ)1/2n · σ trN± = 0 (12)

whereσk = iLk, k = 1, 2, 3 is 1-spin ‘matrix vector’. The operators±im× = m · σ
generate continuous group of rotations about the refraction vectorm. For homogeneous
wavesm = (εµ)1/2n with n = n∗ andn2 = 1. Tensor in× is the generator of the rotation
group of electromagnetic field in vacuum (ε = 1,µ = 1). Maxwell’s equations for fields with
angular frequencyω in an isotropic medium without charged sources have the form

∇×H = ik0εE ∇×E = ik0µH k0 = ω

c
(13)

whereε andµ do not depend on coordinates. Eliminating from (13) vectorE we derive the
Helmholtz equation for the fieldH(
∇× − k0

√
εµ
) (
∇× + k0

√
εµ
)
H = (∇× + k0

√
εµ
) (
∇× − k0

√
εµ
)
H = 0. (14)

Analogous equations can be derived forE, D, B. Alternative representation of (14) allows
the equations(

∇× + k0
√
εµ
)
H = 0

(
∇× − k0

√
εµ
)
H = 0. (15)

Equations of type (15) are called Beltrami equations and corresponding fields are called
Beltrami fields. In the case under consideration∇× → n×∂/∂ζ for the fieldH(ζ ) =
uexp(ikζ ), k = k0

√
εµ and instead of (15) we have

(in× + 1)u = 0 (in× − 1)u = 0.

Tensor in× has two complex circular (or isotropic) eigenvectors with eigenvaluesλ1 = 1 and
λ2 = −1. An isotropic vector is perpendicular to itself. For the fieldH of the ‘incident’
wave (figure 1) these vectors have the formu1 = (s + ip)/

√
2, u2 = u∗1 = (s − ip)/

√
2

and characterize circularly polarized waves of unit intensity. Since±i = exp(±iπ/2) and
s · p = 0, s2 = 1, p2 = 1, s = s∗, p = p∗ then vectoru1 is associated with right-handed
polarized waves and vectoru2 with left-handed polarized waves. The third eigenvectoru3 = n
corresponds to zero eigenvalue of the tensor in×. Vectorsu1, u2 are isotropic inasmuch as
u2

1 = u1 · u∗2 = 0, u2
2 = u2 · u∗1 = 0 andu1 · u∗1 = 1, u2 · u∗2 = 1, n · u1 = n · u2 = 0.

Let us construct with the help of these vectors the Hermitian projective diadsα = u1 ⊗ u∗1,
α∗ = u2⊗ u∗2. We obtain

α = α+ = α2 = − 1
2(n
×2 − in×) α∗ = (α∗)+ = (α∗)2 = − 1

2(n
×2 + in×). (16)

Here we have used the equalitiess⊗s+p⊗p = I = −n×2 = 1−n⊗nandp⊗s−s⊗p = n×.
Now the Hermitian tensor in× = n · σ can be represented in the following spectral form

in× = n · σ = λ1u1⊗ u∗1 + λ2u2⊗ u∗2 = α − α∗.
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A complex plane (Argand space of two-dimensional vectors) and theory of complex-valued
functions provide the fundamental method of investigation of spin particles and antiparticles in
quantum electrodynamics. It is easy to see that multiplication of the vectorsu1, u2 by scalars
±i = exp(±iπ/2) or by pseudotensors±n× causes identical action in the plane formed bys,
p. This action is a rotation by an angle ofπ/2. But combined application of these operations
being multiplication by the resulting operator in× leaves the vectoru1 fixed and changes the
vectoru2 into its opposite:u2 → −u2. This statement, however, has relative sense and
depends on agreement about the rotation direction by an angle ofπ/2. The combined operator
in× can signify rotation by an angle ofπ/2− π/2 = 0 orπ/2 +π/2 = π , which enables us
to speak about the relative parity of photons [26]. The mentioned agreement determines an
orientation of the wavefront surface which is tangent to vectorsp ands. In the case of circular
vectors which describe circularly polarized waves the vectorsE andH yield to the equations

E = ∓in×E H = ∓in×H E = ∓i

√
µ

ε
H E = ∓

√
µ

ε
n×H.

From the latter equation it follows that for circularly polarized wavesE ⊥H too.
According to Fresnel and Arago’s observations, waves that are polarized mutually

perpendicular do not interfere. Their velocities within the limits of the upper and lower
subspaces coincide and are oppositely directed. What does the front of the resulting field
represent? It is evident it will be plane and unoriented. Such surfaces are well known in
geometry. They were first studied by Möbius.

Three diadsα, α∗ andn ⊗ n form a complete set of orthogonal projective operators of
the three-dimensional space

α + α∗ +n⊗ n = 1

αα∗ = α∗α = α(n⊗ n) = (n⊗ n)α = (n⊗ n)α∗ = α∗(n⊗ n) = 0.

For traceless operatorN (12) the spatial evolution operator describes a rotation of the initial
vector of the magnetic field intensity

exp(ik0Nζ) = exp(−k×ζ ) = exp(ik · σζ )
= αe−ikζ + α∗eikζ = −n×2 coskζ +n× sinkζ. (17)

In (17) we do not write a diadn ⊗ n for the reason noted above, when we wrote relations
(8). Orthogonal projective operatorsα, α∗ are simultaneously coherence tensors (polarization
density matrices) of waves of unit intensity with right-handed and left-handed polarizations.
If the matrix basisLk is used, then instead of (16) one can write

α = 1
2[n · σ + (n · σ)2] α∗ = 1

2[−n · σ + (n · σ)2] (18)

where now the 1-spin matrix components of the ‘vector’σ (σk = iLk) are used. The operator
(17) splits a field in the initial point into two independent partial waves, right-handed and left-
handed polarized, which propagate in opposite directions with the same velocitiesc(εµ)−1/2.
From (16)–(18) it follows that replacementn → −n leads toζ → −ζ , α → α∗. Such
symmetry shows the polarization reversibility of light waves in unbounded isotropic media.

The complex vectorH(0) in (1) characterizes the field produced by some source in the
initial point ζ = 0. Any source has to obey some general requirements caused by the nature
of the generated particles (waves). The operator formula (17) can be interpreted in terms of
photons and antiphotons. In this formula the photon and antiphoton projectorsα = u1⊗u∗1 and
α∗ = u∗1⊗u1 divideH(0) into two components:H(0) = (α +α∗)H(0) = (u∗1 ·H(0))u1 +
(u1 · H(0))u∗1. The squares|u∗1 · H|2 and |u1 · H|2 of these components determine the
probabilities that photons have polarizationsu1 andu∗1. The notion about a massless particle
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with certain helicity is invariant under orthochronous Lorentz transformations. Helical states
always appear in pairs. This is a consequence of Maxwell’s equations. It would be impossible
to develop a theory if photons appeared in this theory, for instance, with positive helicity only.
It is for the same reason that a theory with only positively charged particles is impossible. In
such a theory the equivalence of all space–time points would be broken.

Returning to the boundary problem considered above, solution (12) evidently describes
another situation, where one of the partial waves propagates to the boundary and the second
wave does from the boundary in the opposite direction. Traces tr(in×α∗) = 1 and
tr(−in×α) = −1 characterize the angular momenta of the right-handed polarized incident
wave and the left-handed polarized wave propagating to meet the incident wave. The latter
wave may be excited by the incidence of two waves with reversed normals,−n′ and−n′′. It
is clear that the branchesN = ±im× of the refractive index (12) point out the reversibility of
polarized waves in an isotropic medium. The problem of mechanical and optical reversibility
has been studied in detail in the works of Fresnel, Stokes, Helmholtz, Rayleigh, Ritz and
Einstein. After discovery of radioactivity and spin such problems have arisen in many other
dynamics. Since group theory methods and geometrical (topological) approaches are now
widespread in modern physics, reversibility problems have become relevant in new branches
of physics such as photonic crystals, chiral media, chemical waves, scattering by atoms in
optical lattices, and chaos.

In [24] the problem of the existence of transverse waves with parallel vectorsE andH
was discussed. The superposition of meeting partial waves, described by the operator (17),
belongs to rotating light fields having the resulting energy flux vector equal to zero. In so doing
instantaneous positions of the vectorsE ‖ H at different pointsζ fall on helicoidal surfaces
with right-handed and left-handed helices having positive and negative torsions, respectively.
In differential geometry a positive sign is usually attributed to such torsion of a curve when
rotation of its binormal is anticlockwise with respect to the observer. The curve itself is called
‘right-handed’. Otherwise a negative sign is attributed and the curve is called ‘left-handed’.
Since, in the case under consideration, any sign ofζ is allowed then a right-handed circularly
polarized wave withζ = n · r > 0 is a left-handed polarized wave at negativeζ = n · r < 0.

It is easy to check that Fresnel coefficients (10)rs, rp, ts, tp for ‘straight’ andr ′s, r
′
p, t ′s, t

′
p

for ‘reversed’ (n→−n, n′ → −n′, n′′ → −n′′) waves are connected by Stokes relations

r ′s = −rs r2
s + tst

′
s = 1

r ′p = −rp r2
p + tpt

′
p = 1.

(19)

At normal incidence withrs = rp = r andts = tp = t we have the same relations. In [10]
(Barkovsky and Fedorov 1993) the generalized tensor Stokes relations in optical bigyrotropic
and bianisotropic systems were considered.

In terms of photons, phonons and other -ons the reversibility relations of type (19) express
the law ofP -parity conservation. From relations (11) for Fresnel coefficients in the case of
normal incidence it follows, in particular, that starting from co-directed and meeting p- and
s-polarized waves on the boundary one can obtain circularly and elliptically right-handed and
left-handed polarized waves running to the boundary and away from the boundary.

3. Connections of traceless tensorsN with Fresnel coefficients

In [10] we have considered the operator evolution solutions of Maxwell’s equations for
monochromatic (with time dependence∼e−iωt ) electromagnetic plane waves in unbounded
homogeneous isotropic media. It was shown that variation of an electromagnetic field in such
media is locally characterized by the refractive index tensorN . The trace of this tensor can be
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equal to zero. In this case the field is a superposition of two meeting waves with polarizations
[nC] andS which do not coincide

H(z) = α[nC]eikz + βSe−ikz. (20)

VectorsS andC are involved in the refractive index tensorN = (εµ)1/2(I − 2S ⊗ C) and
are under conditionsS ·C = 1,S ·n = C ·n = 0, I = 1−n⊗n, 1 is the unit tensor of the
three-dimensional space, and the unit vectorn determines the positive direction of thez-axis.
The quantitiesα andβ appearing in (20) are expansion coefficients of the initial field vector
H(0) in basis [nC], S:

H(0) = α[nC] + βS.

The evolution form of equation (20) is

H(z) = exp[ikz(I − 2S ⊗C)]H(0) (21)

where the exponential acts to the initial vectorH(0) as a matrix factor. Also, there are other
evolution solutions of Maxwell’s equations of the typeH(t) = exp[−iωt(I −2S⊗C)]H(0)
when spatial dependence∼eikz of the field amplitudeH is assumed to be given (so-called
oscillator solutions). They are described by the frequency operator� = ω(I − 2S ⊗ C)
whereS ·C = 1,S ·n = C ·n = 0 too. If we consider two particular solutionsN ∼ in× on
the one hand and� ∼ in× on the other hand then it is easy to make sure by straightforward
calculation that in both casesE ‖H and therefore the energy flux of such fields is identically
equal to zero. These situations correspond to the examples of fields withE ‖ H considered
in [24] without the use of operator methods. But only for the first case (N ∼ in×) thecurl of
the field is proportional to the field itself (i.e. the field is of the Beltrami type).

The impedance tensorγ which connects the fields vectorsH and [nE] as [nE] = γH
can be calculated for waves of type (20). Taking into account one of the Maxwell equations
[n dH

dz ] = −iωεE/c and equation (21) we conclude that

γ = Z(I − 2S ⊗C)
whereZ = (µ/ε)1/2.

Now let us turn to reflection and refraction of fields of type (20) on the interface of two
isotropic media which are characterized by dielectric permittivities and magnetic permeabilities
ε, µ (z < 0) andε′, µ′ (z > 0), respectively. We shall suppose that the wave incidence is
normal andn is the unit normal vector to the interfacez = 0. Let the fields in the first and the
second media be described by the traceless refractive index tensorsN = (εµ)1/2(I −2S⊗C)
andN ′ = (ε′µ′)1/2(I − 2S′ ⊗C ′) where

S ·C = S′ ·C ′ = 1 S · n = C · n = S′ · n = C ′ · n = 0. (22)

It is evident that boundary conditions impose additional restrictions on the vectorsS, C, S′,
C ′. From the relations

H(0) =H ′(0) [nE](0) = [nE′](0) (23)

and

[nE] = γH [nE′] = γ ′H ′
it follows that

(γ − γ ′)H(0) = 0 (24)

i.e. the field vectorH(0) on the interface has to be an eigenvector of the tensorγ − γ ′ with
zero eigenvalue. This is possible only when the condition

det(γ − γ ′) = − 1
2 tr(γ − γ ′)2 = 0 (25)
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is fulfilled. Substituting in (25) the material impedance tensorsγ = Z(I − 2S ⊗ C) and
γ ′ = Z′(I − 2S′ ⊗ C ′) with Z = (µ/ε)1/2 andZ′ = (µ′/ε′)1/2 and taking into account
relations (22) we receive after uncomplicated transformations

(S ·C ′)(S′ ·C) = (Z +Z′)2

4ZZ′
= 1

T
(26)

whereT is the energy transmission factor connected with the energy reflection factorR by the
relationR +T = 1. The condition (26) is just the additional restriction imposed on the vectors
S,C, S′,C ′ because of the boundary conditions (23). If we specify vectorsS andC for the
first medium and initial vectorH(0) on the interface then vectorsS′ andC ′ are not arbitrary
and they have to be under conditions (26) and (24).

In problems of wave reflection and refraction as a rule three waves are under consideration.
These waves are incident, reflected and refracted (or transmitted). Since the traceless refractive
index tensors describe meeting waves then in this case it is necessary to consider two sets of
waves (two incident, two reflected and two refracted waves) and each set has to be characterized
by its own polarization. Let us specify two mutually orthogonal unit vectorsa andb on the
interface (a · b = n · a = n · b = 0, [ab] = n) and associate them with polarizations of each
set of waves. We assume that from the direction of the first medium (z < 0) thea-polarized
wave of the unit intensity is incident on the interface, and from the direction of the second
medium (z > 0) theb-polarized of the unit intensity is incident. Then, in the first medium the
reflected wave with polarizationra and the transmitted wave with polarizationt ′b are excited
and in the second medium the reflected wave with polarizationr ′b and the transmitted wave
with polarizationta are excited. Coefficientsr, t , r ′, t ′ are Fresnel reflection and transmission
coefficients and yield to the Stoke reversibility relations

r ′ = −r r2 + t t ′ = 1.

For the boundary of two isotropic media

r = Z − Z′
Z +Z′

t = 2Z

Z +Z′
r ′ = Z′ − Z

Z +Z′
t ′ = 2Z′

Z +Z′
. (27)

The field distribution in the first medium will be described by the expression

H(z) = a exp(ikz) + (ra + t ′b) exp(−ikz) (28)

and in the second by

H ′(z) = (ta + r ′b) exp(ik′z) + b exp(−ik′z) (29)

wherek = (εµ)1/2ω/c, k′ = (ε′µ′)1/2ω/c. On the interface

H(0) = (1 + r)a + t ′b H ′(0) = ta + (1 + r ′)b (30)

and in view of (23),

1 + r = t 1 + r ′ = t ′.
But the latter equalities are evident from (27).

We compare (28) and (29) with (20) and identify vectorsS,C andS′,C ′ for each of the
media. Without loss of generality for the first medium we can take

S = ra + t ′b. (31)

The vectorC has to be co-directed with the vectorb (see (28) and (20)). SinceS ·C = 1 then

C = 1

t ′
b. (32)
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In this case the expansion coefficients of the vectorH(0) in basis [nC], S are

α = −t ′ β = 1.

We have

S ⊗C = b⊗ b +
r

t ′
a⊗ b

and then the refractive index tensorN is

N = (εµ)1/2(I − 2S ⊗C) = (εµ)1/2
(
a⊗ a− b⊗ b− 2r

t ′
a⊗ b

)
.

Making the transition to the wavefront subspace and directing thex-axis andy-axis alonga
andb, respectively, we now writeN in the matrix form

N = (εµ)1/2
(

1 −2r/t ′

0 −1

)
. (33)

Matrix (33) has non-orthogonal eigenvectors in view of its non-symmetric ‘triangular’ form.
By similarity transformation this matrix can be reduced to the diagonal matrix with 1 and−1
on the diagonal. So the refractive index tensors under consideration represented as matrices
are similar to Pauli matrices (Pauli matrices are similar to each other). Matrices of type (33)
form a group. Lie algebra of this group and their representations are considered in [27].

For the second medium we take

C ′ = −r ′a + tb (34)

and

S′ = 1

t
b. (35)

Then

α′ = −1 β ′ = t S′ ⊗C ′ = b⊗ b− r
′

t
b⊗ a

and

N ′ = (ε′µ′)1/2(I − 2S′ ⊗C ′) = (ε′µ′)1/2
(
a⊗ a− b⊗ b +

2r ′

t
b⊗ a

)
N ′ = (ε′µ′)1/2

(
1 0

2r ′/t −1

)
.

(36)

Thus we have shown (see (33) and (36)) that in the case of reflection and refraction of meeting
waves, non-diagonal matrix elements of the refractive index tensors are expressed through
Fresnel reflection and refraction coefficients. It remains to verify the satisfiability of the early
obtained condition (26). From (31), (32), (34), (35) it follows that

(S ·C ′)(S′ ·C) = (−rr ′ + t t ′) 1

t t ′
= 1

t t ′
.

Substituting relations (27) in the latter expression we ensure that condition (26) is satisfied.
Also one can verify by straightforward calculation that the vectorH(0) = H ′(0) (30) is the
eigenvector of the tensorγ − γ ′ with zero eigenvalue.

We make another note concerning the operatorsX = (εµ)−1/2N = I − 2S ⊗ C. In an
unbounded homogeneous isotropic medium only conditions of the form (22) are imposed on
vectorsS andC, i.e. in the plane perpendicular to the phase normaln there is an infinite set
of vectorsS andC which satisfy (22). The set of pairs of complex vectorsS andC in the
evolution solutions corresponds to the infinite set of the three-dimensional generalized helices
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of the elliptical cylinders with elements parallel ton. In the particular case ofS = C = S∗,
S ·C = S2 = 1 the set of operatorsX = I − 2S ⊗ S = 1−n⊗n− 2S ⊗ S with different
orientations ofS corresponds to an infinite set of plane mirrors containing the normaln.
Their orientations in the three-dimensional space are determined by vectorsS perpendicular
to n, the replacementS → −S being not essential. In so doing tensorN describes the
evolution of linear polarized waves when an initial vector is real. We have already noted
earlier [10] that the group of operatorsX with discrete orientations ofS corresponds to known
reflectional Coxeter groups [15, 16]. Two reflections in the planes with normalsS1 andS2

are equivalent to the rotation around the vectorn by the doubled angle of 2̂S1S2 between
the reflection planes. According to the theory of Coxeter groups, vectorsS are called root
vectors (or simply roots) and the whole set of roots is called as the system of roots. In the case
of S = C = S∗, vectorsS fall on a circle of unit radius situated in a wavefront plane. It is
evident thatX = TXT −1 = TXT ,N = TNT whereT = T −1 = 1−2n⊗n is the reflection
operator in the real (n = n∗) plane of wavefront. DiadS ⊗ C in operatorX is projective
(S⊗C)2 = S⊗C. This diad projects any vector situated from the right on a straight line along
S. Appropriate matrix operators of reflection in hyperplanes of multidimensional spaces were
introduced by Weblen and Young [28] and have been used by many mathematicians [15,16].
The matrix of affine reflections in then-dimensional space has the formY = 1−2A,A2 = A,
Y 2 = 1. The quadratic formuAu which determines the metric in the space is invariant under
transformationY .

In the lecture on the principle of least action [29], Feynman said in allegorical form that
a particle (photon) ‘smells’ the neighbouring paths to find out whether they have greater or
lesser action. Reflection isometries involved inN for isotropic media allow us to continue
this allegory. Correcting the choice the photon combines ‘smelling’ neighbouring paths with
‘looking’ into infinite sets of mirrors. These sets are connected with different directions of
propagation, including opposite ones. The tracelessness ofN is caused by the indefiniteness
of the reflection operators.

4. Conclusion

In [25] it was shown how kinematical laws of reflection and transmission of light on the plane
boundaries can be derived with the help of the ray involutive operators. Consideration carried
out above shows that dynamical laws of reflection and transmission can be formulated in
terms of involutive operators (reflectional isometries) too. The matrix representation of the
traceless refractive index tensors has typical ‘triangular’ form. Their non-zero non-diagonal
matrix element is the doubled ratio of the Fresnel refraction and transmission coefficients of the
boundary for two conditions of the coherent scattering of waves which light up the boundary
from half-infinite spaces. These tensors in matrix form turn out to be similar to Pauli matrices.
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